/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2015, University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, // Pavel Vlasanek, all rights reserved. Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_FUZZY_F0_MATH_H__ #define __OPENCV_FUZZY_F0_MATH_H__ #include "opencv2/fuzzy/types.hpp" #include "opencv2/core.hpp" namespace cv { namespace ft { //! @addtogroup f0_math //! @{ /** @brief Computes components of the array using direct \f$F^0\f$-transform. @param matrix Input array. @param kernel Kernel used for processing. Function `ft::createKernel` can be used. @param components Output 32-bit float array for the components. @param mask Mask can be used for unwanted area marking. The function computes components using predefined kernel and mask. */ CV_EXPORTS_W void FT02D_components(InputArray matrix, InputArray kernel, OutputArray components, InputArray mask = noArray()); /** @brief Computes inverse \f$F^0\f$-transfrom. @param components Input 32-bit float single channel array for the components. @param kernel Kernel used for processing. Function `ft::createKernel` can be used. @param output Output 32-bit float array. @param width Width of the output array. @param height Height of the output array. Computation of inverse F-transform. */ CV_EXPORTS_W void FT02D_inverseFT(InputArray components, InputArray kernel, OutputArray output, int width, int height); /** @brief Computes \f$F^0\f$-transfrom and inverse \f$F^0\f$-transfrom at once. @param matrix Input matrix. @param kernel Kernel used for processing. Function `ft::createKernel` can be used. @param output Output 32-bit float array. @param mask Mask used for unwanted area marking. This function computes F-transfrom and inverse F-transfotm in one step. It is fully sufficient and optimized for `cv::Mat`. */ CV_EXPORTS_W void FT02D_process(InputArray matrix, InputArray kernel, OutputArray output, InputArray mask = noArray()); /** @brief Computes \f$F^0\f$-transfrom and inverse \f$F^0\f$-transfrom at once and return state. @param matrix Input matrix. @param kernel Kernel used for processing. Function `ft::createKernel` can be used. @param output Output 32-bit float array. @param mask Mask used for unwanted area marking. @param maskOutput Mask after one iteration. @param firstStop If **true** function returns -1 when first problem appears. In case of `false` the process is completed and summation of all problems returned. This function computes iteration of F-transfrom and inverse F-transfotm and handle image and mask change. The function is used in `ft::inpaint` function. */ CV_EXPORTS_W int FT02D_iteration(InputArray matrix, InputArray kernel, OutputArray output, InputArray mask, OutputArray maskOutput, bool firstStop); /** @brief Sligtly less accurate version of \f$F^0\f$-transfrom computation optimized for higher speed. The methods counts with linear basic function. @param matrix Input 3 channels matrix. @param radius Radius of the `ft::LINEAR` basic function. @param output Output array. This function computes F-transfrom and inverse F-transfotm using linear basic function in one step. It is ~10 times faster than `ft::FT02D_process` method. */ CV_EXPORTS_W void FT02D_FL_process(InputArray matrix, const int radius, OutputArray output); /** @brief Sligtly less accurate version of \f$F^0\f$-transfrom computation optimized for higher speed. The methods counts with linear basic function. @param matrix Input 3 channels matrix. @param radius Radius of the `ft::LINEAR` basic function. @param output Output array. This function computes F-transfrom and inverse F-transfotm using linear basic function in one step. It is ~9 times faster then `ft::FT02D_process` method and more accurate than `ft::FT02D_FL_process` method. */ CV_EXPORTS_W void FT02D_FL_process_float(InputArray matrix, const int radius, OutputArray output); //! @} } } #endif // __OPENCV_FUZZY_F0_MATH_H__